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ABSTRACT 
In a peer-to-peer system of interacting Byzantine-fault-tolerant 
replicated-state-machine groups, as system scale increases, so 
does the probability that a group will manifest a fault. If no 
steps are taken to prevent faults from spreading among groups, 
a single fault can result in total system failure. To address this 
problem, we introduce Byzantine Fault Isolation (BFI), a 
technique that enables a distributed system to operate with 
application-defined partial correctness when some of its 
constituent groups are faulty. We quantify BFI’s benefit and 
describe its use in Farsite, a peer-to-peer file system designed to 
scale to 100,000 machines. 

1 INTRODUCTION 
Farsite [2] is a distributed peer-to-peer file system 

that runs on a network of desktop workstations and 
provides centralized file-system service. File storage in 
Farsite is secure, even though the system runs on 
unsecured machines. This security is established, in part, 
through the use of Byzantine Fault Tolerance (BFT), a 
well-known mechanism for building trusted services 
from untrusted components [14, 6]. BFT enables a 
service to continue functioning correctly as long as fewer 
than a third of the machines it is running on are faulty. 

Farsite is designed to be scalable. As more and more 
workstations make use of the file-system service, the 
resources of these workstations become available for use 
by the system. However, the BFT technique cannot 
exploit these additional resources to achieve the greater 
throughput demanded by an increasing user base: Adding 
machines to a BFT group decreases throughput, rather 
than increasing it. 

To achieve an increase in throughput with scale, 
Farsite partitions its workload among multiple interacting 
BFT groups. Unfortunately, as the count of BFT groups 
increases, so too does the probability that some group 
will contain enough faulty machines that the group will 
be unable to suppress the fault. If the system design does 
not account for the failure of one or more BFT groups, a 
single group failure can cause the entire system to fail. 

The alternative to total failure is degraded operation, 
wherein individual group failures cause the system to 
operate in a way that is still partially correct, rather than 
completely unspecified. However, “partial correctness” is 
not something that can be defined in an application-
independent fashion [11]. It is thus not possible to build a 
generic substrate that enables an arbitrary service to 
degrade gracefully in a meaningful and useful manner. 

We have therefore developed a methodology for 
designing a distributed system of BFT groups, wherein a 
faulty group is prevented from corrupting the entire 
system. We call our method Byzantine Fault Isolation 
(BFI). BFI makes use of formal specification [15] to 
constrain the semantic behavior of a faulty system. The 
technique involves selectively weakening the system 
semantics and concomitantly strengthening the system 
design. Formal specification helps determine when these 
two processes have satisfactorily converged. 

The next section surveys previous approaches to 
resisting Byzantine faults. Section 3 describes the Farsite 
file system, the context for our work. Section 4 quantifies 
the value of isolating Byzantine faults, and Section 5 
describes our technique. Section 6 shows an example of 
BFI in Farsite, and Section 7 summarizes. 

2 PREVIOUS WORK 
In 1980, Pease et al. [23] introduced the problem of 

reaching agreement among a group of correctly 
functioning processors in the presence of arbitrarily 
faulty processors; they proved that a minimum of 3t + 1 
processors are needed to tolerate t faults. Two years later, 
they christened this the Byzantine Generals Problem 
[14], as it has been known ever since. A large body of 
research has addressed the problem of Byzantine 
agreement, the first decade of which is well surveyed by 
Barborak and Malek [4]. 

In the mid-to-late 1990’s, several researchers 
combined Byzantine-fault-tolerant protocols with state-
machine replication [26] to produce toolkits such as 
Rampart [24], SecureRing [12], and BFT [6]. These 
toolkits provide a replication substrate for services 
written as deterministic state machines. The substrate 
guarantees that the service will operate correctly as long 
as fewer than a third of its replicas are faulty. An 
unfortunate property of these toolkits is that their 
throughput scales negatively: As the group size grows, 
the system throughput shrinks, which is the exact 
opposite of the behavior desired for scalable systems. 

Throughput scaling is non-positive because a non- 
decreasing fraction of replicas redundantly perform each 
computation. Throughput scaling is made negative by the 
message load of each processor, which is linear in group 
size. Some recent research has addressed the latter issue: 
Lewis and Saia [16] have developed a protocol that 
probabilistically reaches agreement if fewer than an 
eighth of the replicas are faulty. The message workload 



of each processor is logarithmic in group size, so 
throughput scaling is less dramatically negative than for 
BFT. Abd-El-Malek et al. [1] have built a replicated state 
machine based on the Query/Update (Q/U) protocol, 
which requires 5t + 1 processors to tolerate t Byzantine 
faults. In theory, this protocol has zero throughput scaling 
with system size; however, their implementation exhibits 
negative throughput scaling, albeit at a lower rate than 
BFT. 

The above systems all exhibit two properties: (1) non-
positive throughput scaling and (2) all-or-nothing failure 
semantics, meaning that failures beyond the tolerated 
threshold can cause the entire system to fail. 

In the absence of a Byzantine-fault-tolerant substrate 
that provides positive throughput scaling, researchers 
have built systems that partition their workload among 
multiple machines. However, as the system size grows, 
so does the expected number of faulty machines, which 
in turn – given all-or-nothing failure semantics – leads to 
an increasing likelihood of total system failure. We 
observe that this problem could be assuaged if there were 
some means to limit the spread of Byzantine faults. 

Three avenues of research are related to this problem: 
First, several researchers have isolated Byzantine faults 
in distributed problems of academic interest, such as 
dining philosophers [21], vertex coloring [21], and edge 
coloring [25, 18]. Their solutions employ self-stabilizing 
protocols to guarantee that correct results are eventually 
obtained by all nodes that are beyond a specified distance 
(the “containment radius”) from faulty nodes. The formal 
notion of fault containment for self-stabilizing systems 
was introduced by Ghosh et al. [10], who applied it only 
to transient faults. Such transient-fault containment was 
achieved by Demirbas et al. [8] for the problem of 
tracking in sensor networks. None of this research offers 
a broad approach to containing Byzantine faults. 

Second, a number of researchers have investigated 
ways to limit Byzantine corruption when performing 
broadcast [3], multicast [22], or gossip [17, 20]. These 
closely related problems have no computational aspect; 
they merely propagate data. Furthermore, they have the 
property that correct operation implicitly replicates all of 
the data to all machines. The resulting redundancy 
enables machines to vote on the data’s correctness, as in 
the original Byzantine agreement problem. 

Third, some researchers have tackled specialized 
subclasses of the general problem. Merideth [19] 
proposes a proactive fault-containment system that relies 
on fault detection, a well-known specialization of fault-
tolerance problems [7]. Krings and McQueen [13] 
employ standard Byzantine-fault-tolerant protocols only 
for carefully defined “critical functionalities.” The TTP/C 
protocol [5] isolates only a constrained subset of 
Byzantine faults, namely reception failures and consistent 
transmission failures. 

Thus, every known technique for building systems 
that resist Byzantine faults has at least one of the 
following weaknesses: 

• Its throughput does not increase with scale. 
• It addresses only a narrow academic problem. 
• It does not support computation. 
• It does not address general Byzantine faults. 

3 CONTEXT – FARSITE FILE SYSTEM 
We developed BFI in the context of a scalable, peer-

to-peer file system called Farsite [2]. Farsite logically 
functions as a centralized file server, but it is physically 
distributed among the desktop workstations of a 
university or corporation, which may have over 105 
machines. In this environment, independent Byzantine 
faults are significantly more likely than they would be in 
a physically secure server cluster. 

Farsite employs different techniques for managing 
file content and metadata. File content is encrypted, 
replicated, and distributed among the machines in the 
system, and a secure hash of each file’s content is 
maintained with its metadata. File metadata is managed 
by BFT groups of workstations; we call each group a 
“server”. Every machine in a Farsite system fills three 
roles: a client for its local user, a file host storing 
encrypted content of data files, and a member of a BFT 
group that acts as a server for metadata. 

File metadata is dynamically partitioned among 
servers, as follows: A Farsite system is initialized with a 
single server, called the root, which initially manages 
metadata for all files. When the metadata load on the root 
becomes excessive, it assembles a randomly chosen set 
of machines into a new BFT group, and it delegates a 
subset of its files to this newly formed server. This 
process continues as necessary, resulting in a tree of 
delegations. The fanout of the tree is a matter of policy. 

The only difference between directories and data files 
is that the former may have no content and the latter may 
have no children. This is a small enough distinction that 
we refer to them both simply as “files”. 

4 MOTIVATION 
This section argues for the value of isolating 

Byzantine faults in a scalable peer-to-peer system. In 
particular, we consider a distributed file system, 
specifically a Farsite-like system of interacting BFT 
groups. For analytical simplicity, we assume that the 
system’s files are partitioned evenly among the 
constituent BFT groups, and we assume independent 
machine failure. For concreteness, we assume a machine 
fault probability of 0.001; in the analysis, we discuss our 
sensitivity to this value. We evaluate the operational 
fault rate, which is the probability that an operation on a 
randomly selected file exhibits a fault. 



4.1 Model 
If a third or more of the machines in a BFT group are 

faulty, the group cannot mask the fault. Therefore, if Pm 
is the probability that a machine is faulty, the probability 
that a group of size g manifests a fault is: 

( )( )1 1 3 , ,g mP B g g P= − −⎢ ⎥⎣ ⎦  

Function B is the cumulative binomial distribution 
function. In a system of n BFT groups, the probability 
that at least one group manifests a fault is: 

( )1 0, ,s gP B n P= −  

We consider three cases. In the first case, there is no 
fault-isolation mechanism, so a single faulty group may 
spread misinformation to other groups and thereby 
corrupt the entire system. The probability that any given 
file operation exhibits a fault is thus equal to the 
probability Ps that the system contains even one faulty 
group. This is shown by the three dashed lines in Fig. 1 
for BFT groups of size 4, 7, and 10, as the count of 
groups scales up to 105. 

The second case illustrates ideal fault isolation. Each 
BFT group can corrupt only operations on the files it 
manages, so the probability of a faulty file operation 
equals the probability Pg that the file’s managing group is 
faulty. System scale is thus irrelevant, as illustrated by 
the dark line in Fig. 1 for 4-member BFT groups. 

The third case illustrates BFI in Farsite. Pathname 
lookups involve metadata from all files along the path, so 
a faulty group can corrupt lookups to its descendent 
groups’ files. Recall that the count of nodes in a tree with 
l levels and node fanout of f is: 

( ) ( ) ( ), 1 1lN f l f f= − −  

In a tree of N(f, l) BFT groups, the expected number of 
groups that are faulty or have a faulty ancestor is defined 
by the recurrence: 

( ) ( ) ( ) ( ), , 1 , 1g gF f l P N f l P f F f l= ⋅ + − ⋅ ⋅ −  

( ),1 gF f P=  

Thus, the probability of a faulty absolute-path-based file 
operation in a system of N(f, l) BFT groups is: 

( ) ( ), ,tP F f l N f l=  

This is illustrated by the light and medium lines in Fig. 1 
for systems in which each 4-member BFT group has 4 or 
16 children, respectively. Since not all file operations are 
path-based, and since paths can be specified relative to 
open files, the operational fault rate will actually be 
somewhat lower than that indicated by Fig. 1. 

4.2 Analysis 
As the light dashed line shows, a single 4-member 

group has an operational fault rate of 6×10–6, which is 
better than five nines. However, when the scale reaches 
105 groups, the operational fault rate is 0.45; almost half 
of all operations exhibit faults. By contrast, with a group 
fanout of 16, a 105-group Farsite system exhibits an 
operational fault rate of 3×10–5, showing that fault 
tolerance is largely preserved as scale increases. 

An alternate way to improve the large-scale 
operational fault rate is to increase the size of BFT 
groups. However, as Fig. 1 shows, in a system of 105 
groups, the group size must be increased from 4 to 10 to 
achieve the operational fault rate that BFI achieves. This 
increase cuts the system throughput by 60% (= 1 – 4/10) 
or more, because it increases the redundant computation 
by a factor of 2.5 (= 10 / 4) and the intra-group message 
traffic by a factor of 6.25 (= 102 / 42). 

The curves in Fig. 1 are based on a machine fault rate 
of 10–3. For higher rates, the benefit of BFI is even 
greater, since a larger increase in group size (and 
corresponding drop in throughput) is needed to achieve 
the same operational fault rate as BFI. By contrast, a 
lower machine fault rate reduces the benefit, although not 
by much: Even with a machine fault probability of 10–5 in 
a system of 105 groups, BFI enables 4-member groups to 
achieve an operational fault rate that would otherwise 
require 7-member groups and an attendant drop in 
throughput of over 42% (= 1 – 4/7). 

5 BYZANTINE FAULT ISOLATION 
BFI is a technique that prevents a faulty BFT group 

from corrupting an entire system. The technique is based 
on using formal specification to design a distributed 
system with well-defined semantics [15]. BFI 
semantically specifies the faulty behavior that can 
manifest when faults occur in the distributed system. 

Several approaches may be used to validate that the 
system design adheres to the specified fault semantics. In 
our work, we used only informal proof, but greater 
confidence can be attained through model checking [15] 
or mechanically verified formal proof [9]. Our limited 
experience with such methods suggests that they would 
be challenging to apply to a formal spec as big as ours. 
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Fig. 1: Faults at scale (machine fault probability = 0.001) 



5.1 Formal Distributed System Specification 
We follow an approach to formal specification 

advocated by Lamport [15]. This approach has three 
components: a semantic spec, a distributed-system spec, 
and a refinement.* Each of the two specs defines state 
information and actions that affect the state. 

A semantic specification describes how users 
experience the system. Farsite logically functions as a 
centralized file server, so Farsite’s semantic spec defines 
the behavior of a centralized file server. The state defined 
by the semantic spec includes files, handles, and pending 
operations. The actions defined by the semantic spec are 
file-system operations: open, close, read, write, create, 
delete, and move/rename. For example, the semantic spec 
says that the open operation resolves a pathname, checks 
access rights to the file, adds a new handle to the set of 
handles open on the file, and returns the handle to the 
caller. The spec also describes the error codes returned if 
a pathname fails to resolve or the access rights are 
invalid. In sum, the semantic spec characterizes the 
system from the users’ point of view.  

A distributed-system specification describes how a set 
of machines collaborate to produce a desired behavior. 
The state defined by the distributed-system spec includes 
machines, abstract data structures maintained by 
machines, and messages exchanged between machines. 
The actions defined by the distributed-system spec are 
tasks performed by individual machines or BFT groups: 
sending messages, receiving messages, and modifying 
local-machine state. For example, the distributed-system 
spec says that when a server receives a message from a 
client asking for the necessary resources to perform an 
open operation, if the server has the resources available, 
it sends them to the client; otherwise, it begins the 
process of recalling the resources from other clients that 
are holding the resources. In sum, the distributed-system 
spec characterizes the system from the system designers’ 
point of view. 

A refinement is a formal correspondence between the 
semantic spec and the distributed-system spec. It 
describes how to interpret distributed-system state as 
semantic state and distributed-system actions as semantic 
actions. For a state example, the refinement may say that 
the attributes of a particular semantic-level file are 
defined by a particular data structure on a particular 
machine in the distributed system; the particulars express 
the system designer’s rules for what data means and 
which data is authoritative. 

Actions in the distributed-system spec are classified 
as either foreground or background actions, according to 
whether they have semantic effects. A foreground action 

                                                           
* Lamport uses different terminology because his approach 

is applicable to a broader class of problems than distributed 
systems. 

corresponds to an action in the semantic spec; for 
example, updating a certain distributed-system data 
structure may correspond to the completion of an open 
operation in the semantic spec. A background action 
corresponds to a non-action in the semantic spec; for 
example, passing resources to a client by means of a 
message has no semantic effect. 

The basic distributed-system spec defines interactions 
among a set of non-faulty machines. The basic semantic 
spec defines the user-visible behavior of a fault-free 
system. If the system design is correct, the refinement 
will show that the distributed-system spec satisfies the 
semantic spec. 

5.2 Specifying Failure Semantics 
To understand the system’s behavior under fault 

conditions, we modify the distributed-system spec as 
follows: We augment the state of each machine with a 
new flag indicating whether the machine is corrupt, and 
we add a new action that sets a machine’s corrupt flag. 
When a machine is corrupt, its local state is undefined, 
and it can send arbitrary messages to other machines at 
any time. 

These modifications to the distributed-system spec 
prevent it from refining to the basic semantic spec. The 
BFI technique proceeds by progressively modifying the 
two specs until the distributed-system spec again satisfies 
the semantic spec: 

• The semantic spec is weakened to describe how 
faults appear to the users of the system. 

• The distributed-system spec is strengthened to 
quarantine faults from non-corrupt machines. 

The art of Byzantine fault isolation is in determining 
what modifications to make to the two specs. An overly 
weak semantic spec may not isolate faults sufficiently; an 
overly strong distributed-system spec may not facilitate a 
practical and performant implementation; and a semantic 
spec that is too strong or a distributed-system spec that is 
too weak will not admit a satisfactory refinement. 

In Farsite, we modified the semantic spec by 
associating a flag with each file to indicate whether the 
file is tainted, and we added an action that sets the flag. 
We established a refinement in which a file becomes 
tainted if and only if the BFT group that manages the file 
becomes corrupt. 

It would have been ideal to weaken the semantic spec 
so little that tainted files could not corrupt operations on 
non-tainted files. Unfortunately, because path-based file 
operations involve metadata from all files along the path, 
we were unable to design a distributed system that 
refined to such a semantic spec. We thus had to weaken 
the semantic spec further, permitting tainted files to lie 
about their parents and children and thereby to corrupt 
path-based operations on the tainted file’s descendents. 



We were, however, able to constrain those lies to 
prevent a tainted file from affecting operations on files 
elsewhere in the namespace. In particular, a tainted file 
cannot falsely claim an existing non-tainted file as its 
child or parent. Exhaustively, the weakened safety 
semantics allow a tainted to appear to… 

(1) …have arbitrary contents and attributes, 
(2) …not be linked into the file tree, 
(3) …not have children that it actually has, 
(4) …have children that do not actually exist, or 
(5) …have another tainted file as a child or parent. 

In addition, the weakened liveness semantics allow 
operations involving a tainted file to not complete. 

The modifications to Farsite’s distributed-system spec 
are far more involved. Some of the key principles include 
maintaining redundant information across BFT group 
boundaries, augmenting messages with information that 
justifies their correctness, ensuring unambiguous chains 
of authority over data, and carefully ordering messages 
and state updates for operations involving more than two 
BFT groups. We illustrate an example in the next section. 

6 BFI EXAMPLE: MOVE OPERATION 
Our BFI modifications to the distributed-system spec 

are too extensive to permit even a high-level summary in 
this paper. Nonetheless, to convey the flavor of these 
modifications, we outline one example of how we 
modified Farsite’s distributed-system spec to satisfy the 
semantic spec. The example exploits a redundancy that 
we added for BFI, namely that parent-child links are 
stored by both parent and child files. If a client observes 
inconsistent information about the link between a parent 
and a child, the client regards that link as nonexistent. 

The specific example we present is a component of 
the most complex file-system operation, move, whose 
semantics are that an object file has its parent changed 
from a source file to a destination file, thereby changing 
the full pathnames of all descendents of the object file. 

The object, source, and destination files might be 
managed by three separate servers, each of which may be 
faulty or not. We will not present our full case analysis 
here, but we will describe the highlights. 

If all non-faulty servers agree on whether the move 
succeeds, the refinement defines the semantic result as 
the result obtained by the non-faulty servers. Detailed 

analysis shows that this satisfies the fault semantics 
enumerated above. This rule also covers the case in 
which all servers are faulty, because then any semantic 
result is consistent with the fault semantics. 

If no servers are faulty, our protocol ensures that all 
servers agree on the result. 

The tricky cases are those in which one server is 
faulty and the other two disagree on the result. It would 
be ideal to somehow prevent these cases from ever 
occurring, but this is provably impossible [23]. As Table 
1 shows, for each case (faulty object, faulty source, and 
faulty destination), refinement can select a satisfactory 
semantic result if the other servers disagree in a particular 
way (the a subcases) but not if they disagree in the 
opposite way (the b subcases). 

For example, in case 1, the object server is faulty. In 
subcase a, the source believes the move to be successful 
so it unlinks the object, but the destination believes the 
move to be unsuccessful so it fails to link the object. 
Consequently, the object becomes unlinked from the file 
tree. However, safety weakness 2 (see previous section) 
states that a tainted file may appear to not be linked into 
the file tree. Thus, our refinement could interpret the 
outcome either as a tainted file successfully moving and 
then not appearing linked into the tree or as a tainted file 
failing to move and then not appearing linked into the 
tree. 

The analysis of the a subcases for cases 2 and 3 is 
similar albeit slightly more complex, because 2a must be 
interpreted as a failed move and 3a must be interpreted as 
a successful move, to be consistent with the safety 
weaknesses allowed by the failure semantics. 

In the b subcases, no semantic result is consistent 
with the distributed-system outcome. For example, in 
subcase 1b, the destination links the object but the source 
does not unlink it. If the refinement were to interpret this 
as a successful move, the destination file would become 
the object’s parent, but because the source thinks the 
move failed, it still believes that it is the object’s parent, 
so the object could pretend that the source is in fact its 
parent, which our failure semantics disallow. A similar 
argument holds for interpreting the result as a failed 
move. Since it is impossible to refine the subcase b 
outcomes, Farsite must prevent them. 

Our protocol precludes the b subcases by ensuring 
that the non-faulty servers observe certain ordering 
constraints before declaring a move operation successful: 
The object server does not commit until after the source 
server commits, and the destination server does not 
commit until after the source and object servers commit. 
Examination of the table shows that this prevents the 
problematic subcases. For example, subcase 1b cannot 
occur because the destination will not declare success 
until it first hears that the source has declared success, 
which it has not. Table 1: Fault case analysis for move operation 

 

Case Object Source Dest. Semantic 
a faulty success failure either 1 
b faulty failure success none 
a success faulty failure failure 

2 
b failure faulty success none 
a failure success faulty success 

3 
b success failure faulty none 

 



7 SUMMARY 
Although Byzantine Fault Tolerance (BFT) allows a 

trusted service to run on a peer-to-peer system of 
untrusted machines, it does not support scaling up to 
increase system throughput. Scale-up can be achieved by 
partitioning a workload among multiple BFT groups, but 
this leads to an increase in the probability of total system 
failure as the system scale increases. 

To solve this problem, we introduced Byzantine Fault 
Isolation (BFI), a methodology for using formal 
specification to constrain the semantic behavior of a 
faulty system. BFI modifies a system design to formally 
recognize that machines may become corrupt, wherein 
they have undefined local state and can send arbitrary 
messages to other machines. These modifications 
highlight areas that require design changes to restrict the 
spread of faulty information. 

Even in the presence of design features that restrict 
faults, corrupt machines may still affect the system’s 
semantics. Thus, the BFI technique involves modifying 
the system’s defined semantics to reflect the partial 
correctness achievable when the system is degraded. BFI 
uses formal specification to ensure that the modified 
system design satisfies the modified system semantics. 

We quantified the benefit of BFI to scalable systems: 
In a tree-structured system of 105 BFT groups, wherein a 
faulty group can corrupt its descendents’ operations, BFI 
can enable 4-member BFT groups to achieve the same 
operational fault rate as 10-member BFT groups, without 
the corresponding 60% drop in throughput due to 
increased replication and message traffic. 

We employed the BFI technique in the design of the 
Farsite distributed file system, a large and complex peer-
to-peer system designed to scale to 105 machines. BFI 
guided us toward adding specific redundancies, enriching 
messages, restricting authority, and constraining the order 
of distributed operation steps. Using BFI, we related 
these design changes to the system’s semantics, thereby 
showing that file corruption cannot spread to unrelated 
regions of the file-system namespace. 

Prior to BFI, no technique has addressed how to 
interconnect multiple BFT groups in a way that isolates 
Byzantine faults. 
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