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ABSTRACT
In this paper we present our experiences with a P2P content dis-
tribution system that uses Network Coding. Using results from
live trials, we are able to present a detailed performance analysis of
such P2P system from a variety of novel perspectives. We show that
Network Coding incurs little overhead, both in terms of CPU pro-
cessing and I/O activity, and it results in smooth and fast downloads.
To ensure secure transfers, we describe a novel scheme that verifies
encoded blocks on-the-fly and analyze its performance. We also
study the effect of peers behind NATs and firewalls and show the
robustness of the system to large number of unreachable peers.

1. INTRODUCTION
In recent years, a new trend has emerged with peer-to-peer
(P2P) systems providing a scalable solution for distributing
commercial, legal content (e.g. [4, 8]). Such systems use
end-user’s resources to provide a cost-effective distribution
of bandwidth-intensive content to thousands of users.

This paper presents our experiences with a P2P system
that uses Network Coding. While our previous research
showed through simulations that Network Coding provides
efficient and robust distribution [4], it was believed that Net-
work Coding is not practical in real environments because
of encoding and decoding overheads, and because protecting
against block corruption is difficult.

We have implemented a prototype Network Coding P2P
filecasting system (described in §2), which to the best of
our knowledge is the first system of its kind, and tested
it in the distribution of large files (e.g. several GBytes)
over the Internet. In this paper, we present our experiences
implementing and using our system. In particular:

a) We present the performance of a live P2P filecasting system
from a novel set of angles (§3). Our system collects statistics
from both the server and the peers, and, as a result, allows us
to study a number of metrics that were not possible before.
For example, we are able to quantify the content provider’s
savings over time, the dynamics of the topology, the number
of unreachable nodes at any point in time, and the overall
system efficiency.

b) We present our experiences with implementing and using
Network Coding. We quantify the system requirements and
its benefits in terms of download times. In particular, we
show that coding is feasible and incurs little processing over-
head at the server and the peers (§3.5). Moreover, coding is
effective at eliminating the first/last-blocks problems (§3.6).

c) We study the influence of unreachable nodes (e.g. behind
NATs, firewalls) in the system’s efficiency (§4). We com-
pare the percentage of unreachable nodes with the system’s
efficiency over time, and observe that the system is highly

resilient to large number of unreachable peers (e.g. as high
as 70%).

d) We study a novel set of security functions to secure Net-
work Coding systems, which we call Secure Random Check-
sums [5], and show that they have a negligible computational
overhead and, hence, allow on-the-fly verification (§5).

2. SYSTEM OVERVIEW

2.1 Network Coding
Network coding is a novel mechanism that promises optimal
utilization of the resources of a network topology [1,2,7,10].
With network coding, every transmitted packet is a linear
combination of all or a subset of the packets available at
the sender (similar to XORing multiple packets). Observe
that encoded packet can be further combined to generate
new linear combination. The original information can be
reconstructed after receiving enough linearly independent
packets.

This is of great use in large-scale distributed systems, such
as P2P networks, where finding the proper scheduling of in-
formation across the overlay topology is very difficult. Com-
pared to traditional approaches, network coding makes opti-
mal use of the available network resources without the need
for sophisticated scheduling algorithms and provides a high
degree of robustness, even if nodes suddenly depart the sys-
tem or if decisions are based only on partial information [4].
An overview of network coding and its applications is given
in [3].

2.2 Prototype Implementation
We have implemented a network coding based P2P file distri-
bution system in C#. Our content distribution system consists
of three types of participants: one or more peers, a registrar,
and a logger.

Peers are sources and sinks for content data. Peers ex-
change encoded information with each other in units that we
call blocks. Content is seeded into the system by a special
peer, which we call server. Peers that finish the download,
but remain in the system are called seeds.

The registrar enables peer discovery. The active peers
periodically report to the registrar and the registrar provides
a random subset of the active peers to nodes that have too few
neighbors. The logger is an aggregation point for peer and
registrar trace messages. Every peer in the system reports
detailed statistics to the logger; using those statistics we are
able to perform an in-depth evaluation of the distribution.

The peer is the most complex of the three entities, and its
functionality is divided into two components: network trans-
port and content manager. The network transport maintains
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connections to other peers for transferring blocks. We use
two connections per pair of nodes (one for each direction).
Each peer maintains 4-8 connections to other peers. Peers
periodically drop a neighbor at random, encouraging cloud
diversity and mitigating formation of isolated peer islands.

The content manager encodes, decodes, validates, and per-
sists content data. In our experiments, the file is divided into
1000-2000 original blocks; all transfered blocks can be ex-
pressed as combinations of the original blocks. To ensure
low encoding and decoding times, we have grouped blocks
into so-called segments or generations [2], where only blocks
of the same generation are combined. This approach, which
we call Group Network Coding, results in more efficient de-
coding while retaining the network coding advantages. The
encoding/decoding operations take place in a Galois Field
(GF(216)).

3. RESULTS

3.1 Data Summary
Our prototype implementation was used to distribute four
large data files to hundreds of users across the Internet.
The total trial period included roughly four hundred clients.
Clients arrived asynchronously after the notification of each
trial commencement. Each individual trial only handled one
single large file and trials did not overlap in time. Table 1
summarizes the data for all four files delivered. In this paper,
we focus mostly on the results of Trial-4 since this posed the
most stringent load requirements.

During the trial, a single server, which had an upload ca-
pacity of 2.5Mbps was used to publish the file; the same
server served as registrar and logger.

Table 1: Summary of Trials.
Trial 1 Trial 2 Trial 3 Trial 4

Duration (hours) 78 181 97 69
File Size (GB) 3.7 2.8 3.7 3.5

File Blocks 1000 2000 1000 1500
Total Clients 87 94 100 72

Bytes Sent (GB) 129.15 179.63 208.32 143.73
% from Server 33% 44% 19% 16%

% Unreachable Nodes 64% 57% 43% 40%
Avg Download Time (hr) 13 9 16 12

Trial participants were diverse in terms of geographical
location, access capacity and access type (e.g. corporate
links, DSL/cable home users, wireless links). Figure 1 shows
the user characteristics for the first trial; the slope of the
line that connects point (0, 0) and a user equals the average
download rate of the user.

3.2 System Rates
Using the detailed statistics collected in the logger, we can
compute the overall system throughput, which equals the ag-
gregate download rate, and estimate the contributions of the
server, the seeds, and the clients. We plot those performance
statistics for Trial-4 in Fig. 3. The total throughput of the
system follows closely the total number of active users. The
resources contributed by the server remained constant dur-
ing the trial and the system maintained high throughput even
during the beginning of the trial, where many nodes suddenly
arrived and no seed nodes existed.

To better understand the system’s performance, we calcu-
late the user download efficiency. For each user, we record
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Figure 1: Summary of participating users (Trial-1).
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Figure 3: System Rates over time.

its average and maximum download rate, and its arrival time
in the system (peers started arriving after time 10hr). The
download efficiency of a user is the ratio of its average down-
load rate over the maximum; ideally this ratio should equal
1, however the system is constrained by the upload capacities
and hence lower ratios are expected. We group the nodes in
three groups based on their arrival time, and we report the
average download efficiency per group in Table 2. Note that
during the last group interval, there was a large number of
seeds present, while no seeds existed during the first group
interval. Observe that the efficiency is similar for all groups,
including the first group, implying that nodes used the avail-
able resources efficiently even during the early stages of the
trial.

Table 2: Average download efficiency over time
Time period Average St. Dev

10-20hr 0.49 0.13
20-40hr 0.5 0.16
40-60hr 0.52 0.13
Overall 0.5 0.15
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Figure 2: Content Provider effort. Left: Content Provider Savings. Right: Server Share.

3.3 Content Provider Savings
We now study the benefits of using P2P from a content
provider’s point of view. Recall that many hosting sites
charge content owners based on the use of the egress access
capacity.1 The savings are proportional to the ratio of the
aggregate download rate over the upload rate contributed by
the server; the former equals the upload rate of the server in
a client-server distribution. We plot that ratio in Fig. 2(left).
We observe that the server saved about one order of magni-
tude in egress bandwidth and, hence, in monetary costs. This
is a significant benefit, even for our medium sized trial, and
will increase as the number of users increases.

Fig. 2(right) plots server’s fair share ratio over time. To
compute the fair share we divide server’s upload rate by the
rate that the server would have to contribute if all nodes were
uploading to their maximum capacity (so that the aggregate
download rate stays constant). If some nodes do not con-
tribute with upload capacity, then, more load will be put in
by the server and thus, its share would increase. Ideally the
fair share should be 100% indicating that users contribute
enough resources and, hence, the system could scale indef-
initely. We observe that the average load on the server is
≈ 100% of its fair share. The high values of fair share to-
wards the end of the trial indicate a slightly higher usage of
the server’s resources, which are due to the presence of very
few nodes being served mostly from the server.

3.4 Peer’s Performance
We now focus on the performance seen by a typical peer.
In Fig. 4(left), we plot the actual and maximum download
and upload rates for a cable modem user that has a 2.2Mbps
downlink capacity and a 300Kbps uplink capacity. We ob-
serve that the average download rate is ≈ 1.4Mbps and at
times reaches the maximum possible rate. The fluctuations
are due to changes in the aggregate upload capacity in the
system. The upload rate, on the other hand, is consistently
close to its maximum value.

After the download period ended at time 34.5hr, the peer
started decoding the file. Decoding finished at time 35hr,
1Often using the 95th percentile of the maximum rate over
a period of time.

and then the peer become a seed. The upload rate increased
slightly while seeding since there is no signaling in the re-
verse (download) direction. The zero upload rate while de-
coding is an artifact of the implementation and will be re-
moved in future versions.

In Fig. 4(right) we plot the percentage of time spent by
a representative sample of peers on downloading, decoding,
and seeding. Observe that the time spent in decoding is less
the 6% of the total download time; this time can be improved
by using on-the-fly decoding and exploiting parallelization.
It is also worth noting that, although some users stopped their
application immediately after decoding, other stayed in the
system and served other people. The average seeding time
was around 42% of the total time.

3.5 Resource Consumption
We now study the resources used by our network coding
implementation on a typical machine (Pentium IV @2GHz
and 512MB RAM). In Fig. 5(left) we plot CPU usage during
the lifetime of the user. The download period started at time
2hr and ended at time 7.2hr; during that period the CPU
overhead was less than 20%. The deep in CPU’s usage at
time 4hr corresponds to a re-start of the application. The
increase of the CPU utilization to 40% after the end of the
download is due to decoding. The CPU activity droped to
less than 10% after decoding and while the node was seeding.

In Fig. 5(right) we show the disk activity over the down-
load. The spike at time ≈ 7.2hr is due to decoding. (The
smaller spikes while downloading are due to activities un-
related to our P2P application.) During the experiment, we
used interactive applications (e.g. word editing and WWW
browsing) and did not observe any decrease in responsive-
ness. Overall, these results indicate that the network coding
overhead in terms of end-system’s resource consumption are
minimal. We expect the overheads to become negligible as
we implement more sophisticated encoding and decoding
techniques.

3.6 Download Progress
Anecdotal evidence suggests that downloaders in current
peer-to-peer systems perceive slow performance in the be-
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Figure 4: Description of a peer’s activity and performance. Left: Peer download and upload rates. Right:
Time on each activity (for 5 random peers and average).
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Figure 5: Resource consumption on a typical machine during Trial-4. Left: CPU Activity. Right: Disk
Activity.

ginning of the download, because they do not have anything
to offer and get low priority,2 and toward the end of the
download, since they cannot find the last missing blocks. In
fact, [11] shows that if one plots the number of users down-
loading a given portion of the file (e.g. the first 5%, the next
5%, etc), it follows a U-shape, with users spending a large
amount of time to obtain the first and last portions of the
file. This problem is more acute when the number of seeds
is small, or when the size of the cloud is very large. Network
coding can be used to solve this problem.

In Fig.6 we plot the average time spent obtaining each 1%
of file for all users in Trial-4. For example, the 50th column is
the elapsed time it took to go from 49% of the file downloaded
to 50% of the file. The height of the column shows how much
of the overall download time was spent getting that each one
percent. Observe the absence of a U-shape in the graph by
using Network Coding. The reason is that each encoded
block is unique and useful to any node. Thus, newly arriving
nodes can easily obtain useful blocks that they can exchange
with other nodes, and nodes at the end of the download do
not need to wait long periods before finding their missing
blocks.

2Recall that many P2P systems implement algorithms to
discourage free-riders.
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Figure 6: Amount of time spent at each stage of
the download.
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Figure 7: The effect of unreachable peers on the optimal aggregate throughput of the system for two trials.
Left: Trial-1, Right: Trial-4. The top curves are computed assuming all nodes are reachable; the lower curves
take into consideration the set of unreachable peers over time. In Trial-1 the percentage of unreachable users
much higher compared to Trial-4.

4. CONNECTIVITY
The wide deployment of Network Address Translation (NAT)
devices and firewalls reduces peer-to-peer network perfor-
mance. Peers behind NATs and firewalls, which we shall
collectively call unreachable peers, cannot receive inbound
connections. (We exclude from our definition peers behind
NATs and firewalls configured to allow incoming connec-
tions.) Unreachable peers cannot exchange content with
each other, and, hence, cannot take advantage of the network
capacity that exists between them.3 Both their download
performance and the overall system throughput is reduced as
a result.

Based on the observed peer performance and the per-
centage of unreachable nodes, we calculate a) the optimal
throughput of the system assuming all nodes are reachable,
and b) the optimal throughput of the system taking into con-
sideration the set of unreachable peers. The optimal through-
put at time t is computed as the sum of the peak upload rate
of all active peers at time t. To compute the system through-
put taking into consideration unreachable nodes, we replayed
the traces collected during the trials, calculating the optimal
throughput given the existing connectivity constraints. To
this extent, for each time t we first saturate the upload (or
download capacities) of the plausible connections between
unreachable nodes and reachable nodes. Then, we satu-
rate the remaining upload/download capacities of reachable
nodes by matching them with each other. This matching is
optimal. Our computation of the optimal throughput does not
assume an upper limit on the number of connections per node,
which can overestimate the computed optimal throughput.

In Fig. 7 we plot the optimal throughput with full node
connectivity and with the actual connectivity seen during
two different trials. In Fig. 7(left), we present the results for
Trial 1, where the average number of unreachable peers was
quite high, more than 75%. Observe the large discrepancy
between the maximum system throughput with and without

3Note that recent NAT traversal techniques provide efficient
solutions to alleviate the connectivity problem [6]

considering the unreachable peers in the first trial around
time 30hr. After examining the connectivity pattern of users,
we realized that at this specific time, the system reached high
percentages of unreachable peers (more than 85-90%), which
are responsible for the low throughputs.

In Fig. 7(right), we present the results for Trial 4, which
had less than 60% unreachable peers, possibly due to our
efforts to educate the users of the performance benefits of
configuring their NAT boxes and firewalls. We observe that
the throughput under such partial connectivity is fairly close
to that achieved with full connectivity, which implies that the
system performs surprisingly well even with a large number
of unreachable peers. We attribute the resilience of the net-
work to two factors: a) a few nodes with high capacities and
good connectivity can provide good throughput for most un-
reachable nodes, and b) typically the upload access capacity
of a node is much smaller than the download, hence, even-
though unreachable nodes can accept incoming connections,
they can connect to other reachable nodes and saturate their
download capacities. We have validated both assumptions
analytically and experimentally, but, due to space constraints,
we omit the details.

5. SECURITY
A common concern about network coding is the protection
against malicious users. Unlike unencoded transmission,
where the server knows and can digitally sign each block,
in network coding each intermediate node produces “new”
blocks. Homomorphic hash functions can be used to verify
the encoded blocks using the hashes of the original blocks,
however, such functions are computationally expensive [9].
In [5], we propose another verification process that requires
extra work from the server, but is extremely efficient to com-
pute, communicate, and check. Our scheme is based on the
use of random masks and mask-based hashes, which we re-
fer to as Secure Random Checksums (SRCs). Moreover, our
proposed scheme can work with efficient Galois Fields (and
not only with more expensive Zp fields as is the case with
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homomorphic hash functions).
We now give a high-level explanation of how SRCs work.

The server produces as many random elements (numbers
in the encoding field) as the number of symbol elements
in each block. Then, it performs pairwise multiplication
of the vector of random elements with the vector of block
elements and adds the results. For example, assume that the
symbol elements of the block are Bi = [bi,1 . . . bi,n] and the
random numbers are r = [r1 . . . rn], then the SRC of block i isPn

j=1 bi,jrj . The same process is repeated for all file blocks.
An SRC description is the set of the random elements plus
the SRCs of each of the blocks of the file (note that the set of
random elements can be replaced with the seed used for the
random number generator). Because of the linearity of the
computation, it is easy to show that the SRC of an encoded
block can be computed from the SRCs of the original blocks.

When a new client joins the system, it first contacts the
server which computes a new set of SRCs for that client and
communicates the SRCs to the client over a secure channel.
The client keeps the SRCs secret, since if they are revealed,
a malicious node can efficiently fabricate corrupted blocks.
A malicious node that does not know the SRCs can trick a
node only by pure luck. If the client receives many SRCs,4
then it is computational infeasible for an attacker to construct
corrupted encoded blocks without the corruption being de-
tected.

The SRCs are linear operations and can be computed very
efficiently. Our prototype checks encoded blocks at a rate of
almost 100Mbps on a Pentium 4 at 3GHz with 1GB of RAM.
The server can generate new SRCs at a rate higher than 20
Mbps. Note that the rate of generation of SRCs at the server
is not that critical since it is a process that can happen in the
background before the download commences.

6. SUMMARY
In this paper we have described our experiences with a P2P
system that uses network coding. Based on a prototype im-
plementation of our system and the result of several live
distributions, we show that network coding overhead is rel-
atively small, both in terms of CPU processing and I/O ac-
tivity. We also describe a scheme for efficient verification of
encoded blocks (proposed originally in [5]), and show that
the verification process is very efficient.

Moreover, we measure a high utilization of the system
resources and large savings for the content provider even
during flash-crowd events. We also observed a smooth file
download progress, i.e. users do not spend much time in the
beginning or the end of the download.

While coding obviates the need for fancy block scheduling
algorithms, the system’s efficiency still depends largely on
how peers are connected. We provide an initial description
of the impact that unreachable nodes can have and show
that surprisingly the system is highly resilient to very large
number of unreachable peers (e.g. as high as 70%). However,
a deeper analysis is required to better understand the impact
of peer-matching algorithms in the system’s efficiency (e.g.
algorithms that take into account connectivity or access rates
to pair nodes).

4In our implementation each symbol is 16 bits long, and
hence 10 SRCs result in 160 random bits
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