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1. INTRODUCTION
Storage is often a fundamental service providedby peer-to-

peer systems, where the system stores data objects on behalf
of higher-level services, applications, and users. A primary
challenge in peer-to-peer storage systems is to efficiently
maintain object availability and reliability in the face of node
churn. Nodes in peer-to-peer systems exhibit both temporary
and permanent failures, requiring the use of redundancy to
mask and cope with such failures (e.g., [1, 4, 10, 16, 21]).
The cost of redundancy, however, is additional storage and
bandwidth for creating and repairing stored data.

Since bandwidth is typically a much more scarce resource
than storage in peer-to-peer systems, strategies for efficiently
maintaining objects focus on reducing the bandwidth over-
head of managing redundancy, trading off storage as a result.
Typically, these strategies create redundant versions of object
data using either replication or erasure coding as redundancy
mechanisms, and either react to node failures immediately
or lazily as a repair policy.

In this paper, we revisit object maintenance in peer-to-peer
systems, focusing on how temporary and permanent churn
impact the overheads associated with object maintenance.
We have a number of goals: to highlight how different en-
vironments exhibit different degrees of temporary and per-
manent churn; to provide further insight into how churn in
different environments affects the tuning of object mainte-
nance strategies; and to examine how object maintenance and
churn interact with other constraints such as storage capacity.
When possible, we highlight behavior independent of partic-
ular object maintenance strategies. When an issue depends
on a particular strategy, though, we explore it in the context
of a strategy in essence similar to TotalRecall [4], which
uses erasure coding, lazy repair of data blocks, and random
indirect placement (we also assume that repairs incorporate
remaining blocks rather than regenerating redundancy from
scratch).1

Overall, we emphasize that the degrees of both tempo-
rary and permanent churn depend heavily on the environ-
ment of the hosts comprising the system. Previous work
has highlighted how ranges of churn affect object lookup
algorithms [14]; in this paper, we explore how these differ-
ences impact the source of overheads for object maintenance
strategies. In environments with low permanent churn,object
maintenance strategies incur much of their overhead when
initially storing object data to account for temporary churn.
In environments with high permanent churn, however, object

1We choose one strategy to be illustrative more than to advocate a
particular approach, and choose this strategy because of familiarity;
the tradeoffs between replication and erasure coding, for example,
have been well studied [2, 5, 12, 15, 19], and each has its strengths
and weaknesses.

maintenance strategies incur most of their overhead dealing
with repairs — even if the system experiences high temporary
churn. Finally, we highlight additional practical issues that
object maintenance strategies must face, in particular deal-
ing with storage capacity constraints. Random placement,
for example, unbalances storage load in proportion to the
distribution of node uptimes, with both positive and negative
consequences.

2. CHURN
Peer-to-peer systems experience churn as a result of a com-

bination of temporary and permanent failures. A temporary
failure occurs when a node departs the system for a period
of time and then comes back. Any data stored on the node
becomes unavailable during this period, but is not perma-
nently lost. Examples of temporary failures are when home
users login to systems in the evening, or when business users
use systems during the day but logoff overnight. A perma-
nent failure corresponds to a loss of data on a node, such
as when a disk or machine fails, or when a user leaves a
file sharing system permanently. Temporary failures directly
impact availability, and permanent failures directly impact
reliability.

The degrees of both temporary and permanent churn de-
pend heavily on the environment of the hosts comprising the
system. Systems incorporatinghome and business hosts tend
to experience much higher levels of churn than systems in-
corporating server hosts maintained in machine rooms. For
example, Table 1 illustrates the churn characteristics taken
from traces of three different host populations, the Overnet
file sharing system [3], the PlanetLab testbed [17], and hosts
in a large corporation [6].

The observation that different environments experience
different degrees of churn is not new, although character-
izations of churn tend to focus just on temporary churn
(e.g., [14]). Characterizing permanent churn in deployed
systems remains an open question, in part because doing
so requires long-term measurement as well as assumptions
about node behavior; deciding that a node has left perma-
nently within a finite trace essentially requires a threshold
for assuming that observing that a node has left the system
means that it has left permanently. For the Overnet trace, we
consider host departures where the host leaves for more than
six days a permanent failure; all other host departures are
temporary failures. Given the short period of the trace, using
a larger threshold would result in little permanent churn. As
a result, we consider this threshold an upper bound on perma-
nent churn for this population. For the PlanetLab trace, we
consider host departures where the host leaves for more than
thirty days a permanent failure; all other host departures are
temporary failures. For the FarSite study, we use numbers



System Start Date Duration Total Ave Nodes Temporary Failures Permanent Failures
Nodes Per Day Total Per Day (Host) Total Per Day (Host)

Overnet Jan 15th, 03 7 days 1469 1028 33084 4736 (4.61) 107 107 (0.104)
PlanetLab Apr 1st, 04 406 days 655 318 13633 34 (0.11) 593 1.6 (0.005)
FarSite July 1st, 99 35 days 60000 45000 87500 2500 (0.05) 7000 200 (0.004)

Table 1: Churn in representative systems.
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Figure 1: Tracking node availability among a set of nodes over
time. The monitored set of nodes are those nodes that were in
the system at 24 hours into the trace.

reported in the paper.
Comparing the churn in the different environments, we

see that the environments have very different degrees of both
temporary and permanent churn. We normalize the metrics
per day since user and node behavior tends to be diurnal.
The “Ave Nodes Per Day” metric is the number of nodes
in a system per day, averaged across all days in the trace.
Normalized per day per host in the system, the file sharing
trace exhibits an order of magnitude more temporary and
permanent churn than the other environments. The wide-
area population exhibits twice as much temporary churn as
the corporate population, with roughly equivalent permanent
churn.

Another way to compare churn in different environments is
to consider the impact of churn from the perspective of object
maintenance strategies. Systems maintain objects by storing
redundant versions of object data among multiple nodes. As
a result, the behavior of a maintenance strategy depends on
the churn of a set of nodes selected at a particular point in
time, such as when the object is initially stored. Figure 1
shows the effects of churn on a fixed set of nodes over time
in the Overnet and PlanetLab traces. We examined all nodes
in each trace that were available 24 hours into the trace (530
for Overnet, 300 for PlanetLab), and tracked their availability
over six days. The graph plots the percentage of nodes in the
original set that are available in the system over time.

The Overnet set of nodes exhibits a dramatic drop in avail-
ability in the first 24 hours; this drop is due to the high
temporary churn in the environment, particularly nodes with
short uptimes. Both the Overnet and PlanetLab groups of
nodes experience daily variations in availability, also due to
temporary churn. Both systems also exhibit a slow decay
in node availability over time. This slow decay is due to
permanent node failures slowly reducing the original set of

nodes.
Sections 3 and 4 discuss the consequences of temporary

and permanent churn in different environments in more de-
tail. By comparing the characteristics of churn in different
environments, we want to emphasize that environment mat-
ters. As we discuss in more detail later in the paper, differ-
ences in environment impact the focus of object maintenance
strategies.

3. TEMPORARY CHURN
In this section we focus on the approach of using redun-

dancy to handle temporary churn. Since our goal is to provide
insight into the problem, rather than advocate a particular al-
gorithm, we make some simplifying assumptions to highlight
temporary churn issues. In particular, in this section we as-
sume that the node population has no permanent churn, only
temporarychurn, and that a node’s availability characteristics
do not significantly vary during its lifetime. Of course, in an
actual system these assumptions are not realistic: any pop-
ulation experiences permanent churn, and node availability
varies over time. Such shifts in node availability over time
change the steady-state dynamics of the group of nodes stor-
ing object data. A maintenance strategy can detect and adapt
to these changes over longer time scales.

Consider the events that occur immediately after storing
object data in a system with only temporary churn. A main-
tenance strategy selects (typically randomly) a set of nodes
on which to store the blocks comprising an object. One co-
incidental characteristic these nodes share is that they are all
available at the time of object placement. These nodes, how-
ever, vary both in their uptime durations as well as how long
they have been active in their current session. As a result,
over time a fraction of these nodes will become unavailable
due to temporary churn. Eventually, though, the number
of simultaneously available nodes will stabilize in a diurnal
pattern as nodes depart and arrive on a daily basis.

Given this behavior, a maintenance strategy can create
sufficient redundancy to sustain the availability of an object
on the minimum set of available nodes during a day. By
“minimum”, we mean that a sufficient number of nodes are
available at any point in time such that the data they store
is available for use; reducing the set by a node implies that
at some time the data is not available. For strategies that
use replication, unavailability occurs when all replicas are
simultaneously unavailable; for those that use erasure coding,
it occurs when an insufficient number of nodes are available
to reconstruct object data. An object maintenance strategy
can proactively estimate this amount of redundancy when
initially storing the object (e.g., based on past behavior). Or,
it can reactively add redundancy as nodes temporarily depart
the system until the amount of redundancy is sufficient to
mask temporary failures. Either way, eventually the set of
nodes storing object data for a particular file will stabilize
into a random process where a number of simultaneously
available nodes storing data is sufficient to maintain object
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Figure 2: Relationship between temporary churn and redun-
dancy (storage overhead) required to mask it.

availability with high probability (although which nodes are
simultaneously available varies over time). We call this state
“masking” temporary churn, where an object maintenance
strategy is using sufficient redundancy such that temporary
churn will not induce repairs (in our idealized model), and
result in only infrequent repairs in practice (due to changing
node availabilities, etc.).

We also note that the data availability these nodes provide
is probabilistic. Object maintenance strategies estimate the
amount of redundancy required to provide object availability
with a high probability based upon node availability char-
acteristics (e.g., [7], [4]). If nodes in the system experience
a sudden shift in availability (e.g., catastrophic simultane-
ous failures), the probabilistic availability guarantees will
not hold. We also note that placement strategies typically
assume that failures are not correlated. There are clear ex-
amples when failures are correlated (e.g., [9, 20]); however,
even with noticeable diurnal patterns, correlation coefficients
of node availabilities indicate that correlation of nodes in the
system is not strong [3].

Figure 2 illustrates the relationship between temporary
churn and the amount of redundancy required to mask it.
By amount of redundancy, we mean the storage overhead
used by a redundancy technique such as replication or era-
sure coding; a redundancy of three, for example, means that
the storage overhead is three times the file size. For a given
group of nodes storing object data, the x-axis varies the per-
centage of nodes remaining available in the group after one
day has passed since storing the object in the system. The
y-axis shows the degree of redundancy required to keep the
object available. Again, we focus only on temporary churn
and assume that no nodes fail permanently. At a high level,
it is a straightforward inverse relationship. For example,
if any 50% of the original group of nodes are available in
steady state and node arrivals are uniformly distributed, then
the maintenance strategy will need to store the object with a
minimum redundancy factor of two to maintain object avail-
ability in the face of just temporary churn.

Once the set of nodes storing object data stabilizes, a sys-
tem will not need to frequently react to node departures or
create further redundancy on additional nodes. As a result, a
system incurs primary bandwidth overhead for masking tem-
porary churn when it initially places the object in the system.

With only temporary churn, no repairs are necessary. In en-
vironments with little permanent churn, tuning redundancy
for masking temporary churn will have the greatest impact on
minimizing bandwidth overhead. Of course, an actual sys-
tem will still occasionally have to repair data redundancy due
to temporary churn as, for example, node availabilities vary
over time; such repairs will likely be incorporated naturally
in the handling of permanent failures, discussed below.

In summary, using redundancy to deal with temporary
churn has three implications: (1) an object maintenance
strategy can determine a sufficient degree of redundancy to
minimize repairs due to temporary churn, or “mask” tempo-
rary churn; (2) the amount of redundancy required to mask
temporary churn is inversely proportional to the fraction of
simultaneously available nodes storing object data; and (3)
the bandwidth overhead for coping with temporary churn
is dominated by object creation, not by repairs induced by
temporary churn.

4. PERMANENT CHURN
Permanent churn drives repairs. When the system perma-

nently loses nodes storing redundant object data, the system
must eventually repair the redundancy to ensure data reliabil-
ity. The frequency with which the system repairs object data
depends on the degree of permanent churn and the amount
of redundancy restored during repair for long-lived objects.
In environments with substantial permanent churn, like those
that incorporate business and home nodes, the overhead for
repairing long-lived object data dominates the overhead of es-
tablishing sufficient redundancy to mask temporary failures.
As a result, in these environments tuning repair strategies to
deal with permanent churn will have the greatest impact on
minimizing bandwidth overhead.

When a system decides to repair object data, it must decide
how much redundancy to restore. The more redundancy a
system restores during a repair the longer it can delay the next
repair, thereby trading off storage to reduce the frequency
of repairs. In terms of bandwidth overhead, though, it is
not immediately clear what the best choice is. An object
maintenance strategy can either make “smaller” repairs more
frequently, or “larger” repairs less frequently.

The choice depends upon the distribution of permanent
node failures. We show that there exists an optimal balance
between the amount of redundancy restored at each repair and
the frequency of repair under the following model. Assume
that the object maintenance strategy uses erasure coding and
lazy repair [4], and that a repair replenishes any remaining
data with new redundant data to maintain reliability (as op-
posed to regenerating it from scratch). Let x be the threshold
at which the system triggers repair in terms of the number
of nodes storing object data. An object maintenance strat-
egy will restore redundancy by creating new coded blocks of
data on N additional nodes (encoding with a large encoding
graph enables the creation of incremental encoded blocks
over time to supply repairs). Immediately after a repair, an
object has blocks stored on x + N nodes. Since the repair
threshold is x nodes, from one repair to the next N nodes
will fail permanently. This process takes 2Nd

N+x
time, where d

is the average rate of permanent failures measured in terms
of half death time (similar to half life time [11]), the amount
of time it takes for half of the nodes to fail permanently; if
we have N nodes, then it takes d time for N/2 nodes to fail
permanently.
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Figure 3: Optimal bandwidth required to mask permanent
churn depending on degree of temporary churn (number of
nodes required to mask temporary failures).

Our goal is to minimize bandwidth requirements for per-
forming repairs. When using erasure coding, for example,
the system must first read the object. Doing so requires
f bytes (i.e., f is the object size).2 We also store new en-
coded blocks on N new nodes, requiring another Nf/a bytes,
where a is the number of nodes an object gets fragmented
onto. Overall each repair consumes f + Nf/a bytes. The
total bandwidth needed for a repair is f(1+N/a)(x+N)

2Nd
bytes

per second, averaged over the interval of time between re-

pairs. The minimum value occurs at
√

ax and is f(1+
√

x/a)
2

2d
.

A system will typically keep a, object fragmentation, con-
stant. The value of x, the repair threshold, will depend on
the amount of redundancy needed to mask temporary churn
since the object needs to be immediately available at the time
of repair.

Interestingly, the amount of redundancy to restore on a
repair that minimizes bandwidth overhead depends upon the
degree of temporary churn in the system, but not on the de-
gree of permanent churn; the bandwidth overhead certainly
scales with the rate of permanent churn, but the rate does
not affect the choice of how much redundancy to repair. Fig-
ure 3 illustrates the relationship between the temporary churn
experienced by a system and the amount of redundancy to
restore on a repair that minimizes repair bandwidth overhead.
As an example parameterization, we assume that files have
a uniform size (f) of 1 MB, the repair threshold is twice the
redundancy required to mask temporary churn, each file is
fragmented (a) into 16 blocks, and the nodes in the system
permanently fail (d) according to the Overnet trace (which
contains both temporary and permanent churn). The x-axis
shows the repair threshold (x) in terms of the number of
nodes remaining that are storing object data; again, think of
x as the number of nodes (amount of redundancy) needed
to mask temporary churn. The y-axis shows the amount
of redundancy restored on each repair that minimizes repair
overhead.
2Optimizations are possible, such as storing a full replica at one
node to eliminate the read [15], although we note that such opti-
mizations increase storage cost and may not be practical for very
large objects. We could modify our analysis to incorporate them,
but our goal is to understand the trends more than absolute over-
heads.
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Figure 4: Node’s used storage capacity with respect to node’s
availability.

We also simulated an object maintenance strategy with the
characteristics discussed above. We varied the amount of
redundancy added after each repair. The results indicate that
repairs should only restore a small amount of redundancy
as expected from the above analysis (consistent with similar
results for a system model focused on permanent churn [13]).
With a repair threshold of 32 nodes (redundancy factor of
two), a repair should optimally generate 20 new blocks on
nodes (restore a redundancy factor of 1.25) in addition to the
32 nodes remaining in the system.

5. CAPACITY CONSTRAINTS
A primary goal of object maintenance strategies is to re-

duce the bandwidth overhead of making data available and
reliable in the face of churn. The strategies tradeoff storage
to achieve these goals, but they typically still strive to be
storage-efficient. Previous work has evaluated the insertion
failures rates of peer-to-peer storage systems as the system
reaches capacity [8]. Even so, the constraints of both system
and node storage capacity on object maintenance strategies
and their overheads have not been given much attention, par-
ticularly as node availability and churn varies. In this last
section, we motivate the need for maintenance strategies to
also consider the constraints of capacity.

Object maintenance strategies that use indirect block place-
ment with lazy repair, as in TotalRecall [4], randomly place
object data on nodes in the system. A consequence of random
placement is that it unbalances storage load in proportion to
the distribution of node uptimes. To illustrate this effect, we
simulated placing 1,024 1-MB objects into a system of 2,000
nodes paced evenly throughout a day. We then measured
the number blocks each node stores at the end of the day
when using a redundancy factor of three to store objects. We
used the Overnet trace to simulate node arrivals and depar-
tures and determine node uptimes; the effect is similar in
other environments, although the distribution of uptimes will
change. Figure 4 shows the results of this experiment in a
scatter plot. Note that each object is divided into encoded
blocks (the parameter a in Section 4). In this experiment we
divided object into 32 blocks (if the replication factor is 3, the
systems stores 96 encoded blocks for a file). For each node
in the system, the graph shows the number of blocks stored
on the node according to its uptime. The diagonal cluster



 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 30  35  40  45  50  55  60  65  70  75

R
ep

ai
r 

C
os

t w
ith

 r
es

pe
ct

iv
e 

to
 th

e 
In

fin
ite

 S
to

ra
ge

 C
as

e

Percentage of Used Space

Figure 5: Normalized repair cost as a function of used capacity.

shows the correlation of node uptime and storage load (out-
liers, such as in the lower right corner, correspond to nodes
entering the system as the simulation ends).

This effect is due to the random selection of nodes when
placing object data — both when the object is initially cre-
ated, as well as during repair. Nodes with longer uptimes
will be selected more often than nodes with shorter uptimes
and, as a result, store more blocks over time. Storage is a
comparatively plentiful resource, but nodes still have finite
capacities (particularly if only a small fraction of storage on
a node is available for use by other nodes). Consequently,
over time nodes with longer uptimes will fill to capacity faster
than nodes with shorter uptimes.

This effect has both positive and negative consequences.
On the positive side, it is a natural mechanism by which the
system will favor storing object data on nodes with good
availability. Favoring nodes with long uptimes reduces the
amount of storage, and hence bandwidth overhead, required
to mask temporary churn. (Note, though, that if permanent
failures are independent of node uptimes, this effect does
not reduce the rate of repairs.) This effect is somewhat sim-
ilar to the natural formation of stable cores of supernodes
in unstructured networks, also due to the bias of node upti-
mes [18].

On the negative side, object maintenance strategies will
need to explicitly respect node storage capacities when mak-
ing placement decisions. Strategies that use indirect place-
ment can adapt to storage capacity constraints by simply
removing nodes at capacity from random selection. Re-
specting capacities has two consequences: (1) since indirect
placement biases towards nodes with higher uptimes, data for
newer objects gets placed on nodes with lower uptimes; and
as a result, (2) repair overhead increases more than linearly
as system storage grows towards capacity.

To illustrate this effect, we repeat the object maintenance
simulation and extend it so that all nodes have equivalent
capacity constraints. Figure 5 shows the results of capacity
constraints on repair overhead. The y-axis shows repair over-
head normalized to the situation where nodes have unlimited
storage capacity. The x-axis varies capacity as a percentage
of used system capacity. Below 32% capacity object mainte-
nance is essentially unconstrained and has equivalent repair
overhead as unlimited capacity. Above 32% the system the
system places data on more nodes with lower availability,

increasing the overall repair overhead. At 65% capacity, for
example, repair overhead increases by 20%.

Object maintenance strategies that eagerly repair on suc-
cessors (e.g., CFS) or leaf sets (e.g., PAST) will not exhibit
this bias since nodes store data relative to their position in
the ID space, and not relative to uptime. Such placement
implicitly assumes that nearby nodes in the ID space can al-
ways store data given to it, although in practice some nodes
in the middle of a successor list, for instance, may reach
capacity before other nodes. One approach to this problem
is to use replica diversion to introduce a level of indirection,
effectively implementing indirect placement [8]. Alterna-
tively, successor placement can skip successors at full capac-
ity when propagating redundant data down the successor list,
effectively treating those successors as “failed” nodes with
respect to placement. Doing so, however, will likely require
either direct or indirect bookkeeping to track which succes-
sors store redundant object data, evolving such placement
strategies from direct towards indirect placement.

6. CONCLUSION
In this paper, we revisit object maintenance in peer-to-peer

systems, focusing on how temporary and permanent churn
impact the overheads associated with object maintenance.
Overall, we emphasize that the degrees of both temporary
and permanent churn depend heavily on the environment of
the hosts comprising the system. These differences impact
the source of overheads for object maintenance strategies.
Finally, we highlight additional practical issues object main-
tenance strategies must face, in particular dealing with stor-
age capacity constraints. Experience with deployments of
peer-to-peer storage systems will undoubtedly raise a num-
ber of additional practical constraints that object maintenance
strategies will need to address.
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